好吊妞人成视频在线观看强行_欧美αⅤ一区二区_黄色网站久久免费看_在线视频免播放器a

醫(yī)療器械法規(guī)、注冊、臨床、體系認(rèn)證、信息系統(tǒng)一站式服務(wù)
24×7服務(wù)熱線:0571-86198618 簡體中文 ENGLISH
當(dāng)前位置:網(wǎng)站首頁>新聞動態(tài) >肺結(jié)節(jié)CT影像輔助檢測軟件注冊審查指導(dǎo)原則(征求意見稿)
肺結(jié)節(jié)CT影像輔助檢測軟件注冊審查指導(dǎo)原則(征求意見稿)
發(fā)布日期:2022-01-16 12:39瀏覽次數(shù):2013次
肺結(jié)節(jié)CT影像輔助檢測軟件注冊審查指導(dǎo)原則(征求意見稿)

肺結(jié)節(jié)CT影像輔助檢測軟件注冊審查指導(dǎo)原則(征求意見稿)

本指導(dǎo)原則是對肺結(jié)節(jié)CT影像輔助檢測軟件的一般要求。注冊申請人應(yīng)依據(jù)具體產(chǎn)品的特性對注冊申報(bào)資料的內(nèi)容進(jìn)行充實(shí)和細(xì)化。注冊申請人還應(yīng)依據(jù)具體產(chǎn)品的特性確定其中的內(nèi)容是否適用,若不適用,需具體闡述其理由及相應(yīng)的科學(xué)依據(jù)。

本指導(dǎo)原則是供注冊申請人和技術(shù)審評人員使用的指導(dǎo)性文件,但不包括注冊審批所涉及的行政事項(xiàng),亦不作為法規(guī)強(qiáng)制執(zhí)行,如果有能夠滿足相關(guān)法規(guī)要求的其他方法,也可以采用,但是需要提供詳細(xì)的研究資料和驗(yàn)證資料。應(yīng)在遵循相關(guān)法規(guī)的前提下使用本指導(dǎo)原則。本指導(dǎo)原則是在現(xiàn)行法規(guī)和標(biāo)準(zhǔn)體系以及當(dāng)前認(rèn)知水平下制定的,隨著法規(guī)和標(biāo)準(zhǔn)的不斷完善,以及科學(xué)技術(shù)的不斷發(fā)展,本指導(dǎo)原則相關(guān)內(nèi)容也將進(jìn)行適時(shí)的調(diào)整。本指導(dǎo)原則中相關(guān)內(nèi)容均應(yīng)執(zhí)行最新版本的標(biāo)準(zhǔn)。

本指導(dǎo)原則是人工智能醫(yī)療器械指導(dǎo)原則體系的重要組成部分,基于人工智能醫(yī)療器械審評指導(dǎo)原則的通用要求,明確了肺結(jié)節(jié)CT圖像輔助檢測軟件的具體要求。

一、適用范圍

本指導(dǎo)原則適用于肺結(jié)節(jié)CT影像輔助檢測軟件的產(chǎn)品注冊。按現(xiàn)行《醫(yī)療器械分類目錄》,該類產(chǎn)品分類編碼為21-04-02,管理類別為三類。

肺結(jié)節(jié)CT影像輔助決策軟件包括肺結(jié)節(jié)CT影像輔助檢測軟件、肺結(jié)節(jié)CT影像輔助診斷軟件,前者主要用于疑似肺結(jié)節(jié)的檢測或者檢測及影像學(xué)分類,后者主要用于疑似肺結(jié)節(jié)良惡性等臨床診斷。肺結(jié)節(jié)CT影像輔助診斷軟件可參照本指導(dǎo)原則執(zhí)行。

二、注冊審查要點(diǎn)

(一)監(jiān)管信息

明確產(chǎn)品名稱的確定依據(jù)、管理類別、分類編碼、規(guī)格型號、產(chǎn)品組成等信息。

1.   產(chǎn)品名稱

產(chǎn)品命名應(yīng)符合《醫(yī)療器械通用名稱命名規(guī)則》的要求。根據(jù)產(chǎn)品預(yù)期用途可采用肺結(jié)節(jié)CT影像輔助檢測軟件進(jìn)行命名。

2.分類編碼

依據(jù)《醫(yī)療器械分類目錄》,申報(bào)產(chǎn)品分類編碼為21-04-02。按第三類醫(yī)療器械管理。

3.注冊單元?jiǎng)澐?/p>

根據(jù)產(chǎn)品的技術(shù)原理、結(jié)構(gòu)組成、性能指標(biāo)、適用范圍進(jìn)行注冊單元?jiǎng)澐帧?/p>

可以與CT設(shè)備一起作為軟件組件注冊,也可以按照獨(dú)立軟件注冊。

4.適用范圍

適用范圍需明確處理對象、核心功能、適用人群、目標(biāo)用戶、臨床用途。

例如,用于胸部CT影像的顯示、處理、測量和分析,可對4mm及以上肺結(jié)節(jié)進(jìn)行識別并分析結(jié)節(jié)影像學(xué)特征,供經(jīng)培訓(xùn)合格的醫(yī)師使用,不能單獨(dú)用作臨床診療決策依據(jù)。

(二)綜述資料

1. 產(chǎn)品描述

1.1器械及操作原理描述

1.1.1工作原理

需詳述產(chǎn)品的工作原理,例如:基于深度學(xué)習(xí)技術(shù)對醫(yī)學(xué)影像進(jìn)行分析處理、對肺結(jié)節(jié)進(jìn)行分割、檢測、自動識別等。

1.1.2結(jié)構(gòu)組成

結(jié)構(gòu)組成明確交付內(nèi)容和功能模塊,其中交付內(nèi)容包括軟件安裝程序、授權(quán)文件、外部軟件環(huán)境安裝程序等軟件程序文件,功能模塊包括客戶端、服務(wù)器端(若適用)、云端(若適用),若適用注明選裝、模塊版本?;谌斯ぶ悄芩惴ǎㄈ缟疃葘W(xué)習(xí))的功能模塊,需在模塊名稱中注明人工智能(如深度學(xué)習(xí))。

1.2 型號規(guī)格

需明確申報(bào)產(chǎn)品的型號規(guī)格及發(fā)布版本。產(chǎn)品型號/規(guī)格及其劃分,如同一個(gè)注冊單元包含多個(gè)型號規(guī)格,需提供產(chǎn)品型號規(guī)格區(qū)分列表或配置表。

1.3研發(fā)歷程

闡述申請注冊產(chǎn)品的研發(fā)背景和目的。如有參考的同類產(chǎn)品或前代產(chǎn)品,需提供同類產(chǎn)品或前代產(chǎn)品的信息,并說明選擇其作為研發(fā)參考的原因。

2.適用范圍和禁忌證

(1)適用范圍

適用范圍需明確處理對象、核心功能、適用人群、目標(biāo)用戶、臨床用途、軟件與醫(yī)生閱片順序。

例如,肺結(jié)節(jié)CT影像輔助檢測軟件產(chǎn)品適用范圍為:用于胸部CT影像的顯示、處理、測量和分析,可對4mm及以上肺結(jié)節(jié)進(jìn)行識別并分析結(jié)節(jié)影像學(xué)特征,供經(jīng)培訓(xùn)合格的醫(yī)師使用,不能單獨(dú)用作臨床診療決策依據(jù)。

(2)預(yù)期使用環(huán)境

需明確設(shè)備使用場所和使用環(huán)境要求。

設(shè)備使用場所包括:醫(yī)療機(jī)構(gòu)機(jī)房等。

使用環(huán)境要求需至少包括:溫度、濕度、大氣壓、光照條件。

(3)適用人群

需詳述產(chǎn)品的適用人群。目標(biāo)人群信息(如用于篩查、診斷)或無預(yù)期治療特定人群的聲明、感興趣器官/疾病/病灶/異常、以及預(yù)期使用該產(chǎn)品的目標(biāo)用戶(如經(jīng)培訓(xùn)合格的放射科醫(yī)師、技師、??漆t(yī)師等)

(4)禁忌證

明確產(chǎn)品臨床應(yīng)用的禁忌證以及不推薦使用該產(chǎn)品的情況。

3.產(chǎn)品功能

明確軟件與醫(yī)生閱片順序。結(jié)合用戶界面圖示詳細(xì)介紹技術(shù)要求中對應(yīng)的臨床功能,如有特殊聲明,如用于檢測繼發(fā)性結(jié)節(jié)或更小結(jié)節(jié),可以在功能中體現(xiàn)。明確自動、手動、半自動輸出的數(shù)據(jù)、量化分析的具體內(nèi)容、服務(wù)器部署(局域網(wǎng)、云端)等。

(三)非臨床資料

1.產(chǎn)品風(fēng)險(xiǎn)管理資料

依據(jù)YY/T 0316《醫(yī)療器械風(fēng)險(xiǎn)管理對醫(yī)療器械的應(yīng)用》,提供產(chǎn)品風(fēng)險(xiǎn)管理報(bào)告。

申請人需重點(diǎn)說明:申報(bào)產(chǎn)品的研制階段已對有關(guān)可能的危害及產(chǎn)生的風(fēng)險(xiǎn)進(jìn)行了估計(jì)和評價(jià),針對性地實(shí)施了降低風(fēng)險(xiǎn)的技術(shù)和管理方面的措施。產(chǎn)品性能測試對上述措施的有效性進(jìn)行了驗(yàn)證,達(dá)到了通用和專用標(biāo)準(zhǔn)的要求。申請人對所有剩余風(fēng)險(xiǎn)進(jìn)行了評價(jià),全部達(dá)到可接受的水平。產(chǎn)品風(fēng)險(xiǎn)分析資料需為申請人關(guān)于產(chǎn)品安全性的承諾提供支持。

風(fēng)險(xiǎn)管理報(bào)告一般包括以下內(nèi)容:

(1)申報(bào)產(chǎn)品的風(fēng)險(xiǎn)管理組織。

(2)申報(bào)產(chǎn)品的組成。

(3)申報(bào)產(chǎn)品符合的安全標(biāo)準(zhǔn)。

(4)申報(bào)產(chǎn)品的預(yù)期用途,與安全性有關(guān)的特征的判定。

(5)對申報(bào)產(chǎn)品的可能危害作出判定(見附錄1)。

(6)對所判定的危害采取的降低風(fēng)險(xiǎn)的控制措施。

(7)對采取控制措施后的剩余風(fēng)險(xiǎn)進(jìn)行估計(jì)和評價(jià)。

2.產(chǎn)品技術(shù)要求及檢測報(bào)告

2.1產(chǎn)品技術(shù)要求

依據(jù)《醫(yī)療器械產(chǎn)品技術(shù)要求編寫指導(dǎo)原則》進(jìn)行編制。

  2.1.1規(guī)格信息

明確軟件發(fā)布版本和版本命名規(guī)則。軟件版本命名規(guī)則原則上需涵蓋算法驅(qū)動型更新和數(shù)據(jù)驅(qū)動型更新,明確并區(qū)分重大軟件更新和輕微軟件更新,其中重大軟件更新列舉常見典型情況。

明確不同型號間產(chǎn)品差異。

2.1.2性能指標(biāo)

明確產(chǎn)品處理對象,以及數(shù)據(jù)接口信息,包括成像模態(tài)(如計(jì)算機(jī)體層攝影)和特定軟硬件名稱及型號(如適用)。

明確軟件所有的臨床功能,如結(jié)節(jié)檢出的尺寸范圍(如4-30mm)、結(jié)節(jié)密度分類類別(如實(shí)性、亞實(shí)性的手動分類等)、結(jié)節(jié)位置(如肺葉、肺段、肺結(jié)節(jié)CT圖像層面、肺內(nèi)、胸膜)、結(jié)節(jié)標(biāo)記方式(緊密包裹結(jié)節(jié)的邊界框、不緊密包裹結(jié)節(jié)的邊界框)、分割方式(自動分割、半自動分割、手動分割)、測量功能(如體積、最大軸向平面最長直徑、短徑、平均直徑、最大三維直徑、有效直徑、平均密度、面積等)、隨訪評估功能(如倍增時(shí)間、數(shù)值參數(shù)的百分比(%)和絕對變化、結(jié)節(jié)長軸、短軸、平均直徑、最大三維直徑、有效直徑、體積、平均密度等)、測量精度(相對誤差絕對值的平均值、絕對誤差)、結(jié)節(jié)的3D或MIP可視化等。

使用限制明確應(yīng)用場景(體檢篩查、門診病房)、患者(年齡、地域、疾病類型)、CT設(shè)備廠家、探測器排數(shù)、CT掃描參數(shù)(如管電壓、管電流、層厚/層間距、劑量、窗寬窗位、重建方式、顯示方式)、放射學(xué)檢查條件(CT增強(qiáng)掃描、CT平掃)、CT圖像質(zhì)量要求(如分辨率、偽影)、結(jié)節(jié)檢出的尺寸范圍、結(jié)節(jié)密度分類類別。如軟件包含圖像質(zhì)量判定功能,明確軟件使用限制。

若含有基于測評數(shù)據(jù)庫測試的性能指標(biāo),其要求參考《人工智能醫(yī)療器械注冊審查指導(dǎo)原則》。

運(yùn)行環(huán)境,運(yùn)行在不同計(jì)算機(jī)系統(tǒng)的產(chǎn)品模塊(如客戶端和云端)需分別描述其運(yùn)行環(huán)境。

附錄中明確軟件輸出報(bào)告及界面數(shù)據(jù)圖示及測評數(shù)據(jù)庫數(shù)據(jù)庫/集信息。服務(wù)器部署(局域網(wǎng)、云端)。

2.2檢驗(yàn)報(bào)告

產(chǎn)品需符合GB/T 25000.51 《系統(tǒng)與軟件工程 系統(tǒng)與軟件質(zhì)量要求和評價(jià)(SQuaRE)第51部分:就緒可用軟件產(chǎn)品(RUSP)的質(zhì)量要求和測試細(xì)則》的要求。

注冊人需在軟件研究資料中提交GB/T 25000.51自測報(bào)告或委托有資質(zhì)的醫(yī)療器械檢驗(yàn)機(jī)構(gòu)出具檢驗(yàn)報(bào)告。檢測報(bào)告需明確軟件發(fā)布版本信息。

3.軟件研究

(1)基本要求

生產(chǎn)企業(yè)需依據(jù)《醫(yī)療器械軟件注冊審查指導(dǎo)原則》提交相應(yīng)軟件研究資料。其中,核心算法所述人工智能算法需依據(jù) 《人工智能醫(yī)療器械注冊審查指導(dǎo)原則》提交相應(yīng)算法研究資料。

生產(chǎn)企業(yè)需依據(jù)《醫(yī)療器械網(wǎng)絡(luò)安全注冊審查指導(dǎo)原則》提交網(wǎng)絡(luò)安全描述文檔。按照《人工智能醫(yī)療器械注冊審查指導(dǎo)原則》提交數(shù)據(jù)安全資料。

若使用云計(jì)算服務(wù),生產(chǎn)企業(yè)需依據(jù)《人工智能醫(yī)療器械注冊審查指導(dǎo)原則》提交相應(yīng)研究資料。使用云計(jì)算服務(wù)需明確服務(wù)模式、部署模式、核心功能、數(shù)據(jù)接口、網(wǎng)絡(luò)安全能力、服務(wù)(質(zhì)量)協(xié)議等要求。

軟件版本命名規(guī)則涵蓋算法驅(qū)動型軟件更新和數(shù)據(jù)驅(qū)動型軟件更新;區(qū)分重大軟件更新和輕微軟件更新,其中重大軟件更新需列舉常見典型情況。

(2)軟件安全級別

該類產(chǎn)品的軟件安全性級別為嚴(yán)重(C)級。

(3)核心算法

核心算法的選擇可以參考下表,其中采用全新算法(如深度學(xué)習(xí))需提供算法研究資料。

表1. 核心算法示例

算法名稱

類型

用途

功能

灰度拉伸圖像增強(qiáng)算法

公認(rèn)成熟算法

影像增強(qiáng),用于增強(qiáng)影像對比度,提升算法精度

肺葉分割及肺結(jié)節(jié)檢測

NMS非極大值抑制

公認(rèn)成熟算法

目標(biāo)選擇

以預(yù)測概率對檢測框進(jìn)行優(yōu)先級排序,消除冗余檢測框,抑制假陽性檢出

基于FPN-ONS的肺結(jié)節(jié)檢出算法

全新

對肺部小結(jié)節(jié)進(jìn)行檢出

輔助醫(yī)生檢測肺結(jié)節(jié)

肺分割算法

全新

對左肺、右肺進(jìn)行分割,提取肺野區(qū)域

過濾肺結(jié)節(jié)檢出算法檢出的肺外假陽性,以及肺結(jié)節(jié)左右肺定位

基于UNET的肺葉分割算法

全新

對左肺上下葉,右肺上中下葉進(jìn)行分割

肺結(jié)節(jié)肺葉定位

肺段分割算法

全新

對左肺8個(gè)肺段,右肺10個(gè)肺段進(jìn)行分割

肺結(jié)節(jié)肺段定位

肺結(jié)節(jié)分割算法

全新

對肺結(jié)節(jié)進(jìn)行分割,并計(jì)算長短徑

輔助醫(yī)生測量肺結(jié)節(jié)體積,長短徑

肺結(jié)節(jié)密度分類算法

全新

對肺結(jié)節(jié)密度類型(磨玻璃,實(shí)性,鈣化,部分實(shí)性)進(jìn)行分類

輔助醫(yī)生判斷肺結(jié)節(jié)密度類型

肺結(jié)節(jié)惡性程度評估算法

全新

對肺結(jié)節(jié)的良惡性進(jìn)行評估,輸出惡性程度(0-100%)

輔助醫(yī)生對肺結(jié)節(jié)良惡性進(jìn)行判斷

肺結(jié)節(jié)密度測量算法

公認(rèn)成熟算法

基于肺結(jié)節(jié)分割,測量肺結(jié)節(jié)平均HU值

輔助醫(yī)生測量肺結(jié)節(jié)內(nèi)部HU值

……




4.算法研究資料

4.1算法基本信息

肺結(jié)節(jié)CT影像輔助檢測軟件所涉及的算法一般包括肺結(jié)節(jié)檢出算法、肺結(jié)節(jié)分類算法和肺結(jié)節(jié)測量算法。其中肺結(jié)節(jié)檢出算法目的在于在胸部CT影像中利用人工智能技術(shù)自動檢出肺結(jié)節(jié),輔助醫(yī)生篩查;肺結(jié)節(jié)分類算法對每個(gè)肺結(jié)節(jié)的屬性進(jìn)行歸類,按照類別不同,肺結(jié)節(jié)分類算法包括但不限于肺結(jié)節(jié)密度分類算法,肺結(jié)節(jié)解剖定位分類算法等;肺結(jié)節(jié)測量算法對每個(gè)肺結(jié)節(jié)的屬性進(jìn)行量化測量,區(qū)別于肺結(jié)節(jié)分類算法,肺結(jié)節(jié)測量算法輸出的是連續(xù)的量化值,而肺結(jié)節(jié)分類算法輸出的是離散的類別。按照測量屬性不同,肺結(jié)節(jié)測量算法包括但不限于肺結(jié)節(jié)體積測量算法,肺結(jié)節(jié)密度值測量算法和肺結(jié)節(jié)長短徑測量算法等。

4.1.1肺結(jié)節(jié)檢出算法

肺結(jié)節(jié)檢出算法需明確算法的輸入,比如算法采用的是2D,2.5D還是3D的胸部CT圖像作為神經(jīng)網(wǎng)絡(luò)的輸入;算法的輸出,比如緊密包裹肺結(jié)節(jié)的矩形框端點(diǎn)(二維/三維),肺結(jié)節(jié)中心點(diǎn);

明確算法所采用的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),如 Faster RCNN;明確算法訓(xùn)練采用的損失函數(shù),如交叉熵,L1范數(shù);明確算法設(shè)計(jì)過程中網(wǎng)絡(luò)結(jié)構(gòu)、損失函數(shù)等核心組件選擇和設(shè)計(jì)的原則、方法與風(fēng)險(xiǎn)考量,如肺結(jié)節(jié)大小尺度的差異,肺結(jié)節(jié)與背景正負(fù)樣本的不均衡性、假陽性、過擬合等;若肺結(jié)節(jié)檢出采用多個(gè)模型融合,需明確不同模型訓(xùn)練與推理的方式,以及模型融合的策略,如級聯(lián),多數(shù)投票;

肺結(jié)節(jié)檢出存在同一個(gè)目標(biāo)多個(gè)重疊框的問題,算法需明確匹配關(guān)系所采用的策略,如交并比(IoU),定位框中心距離;

明確算法的流程圖,需包含算法運(yùn)行前所進(jìn)行的前處理(圖像縮放、圖像像素值歸一化、圖像重采樣)以及算法運(yùn)行后所進(jìn)行的后處理操作(圖像重采樣、非最大化抑制)。明確訓(xùn)練與部署所采用的框架(如Tensorflow, Pytorch)、算法運(yùn)行環(huán)境(如內(nèi)存、顯存的需求)。

若使用遷移學(xué)習(xí)技術(shù),除上述內(nèi)容外還需補(bǔ)充預(yù)訓(xùn)練模型的數(shù)據(jù)集構(gòu)建、驗(yàn)證與確認(rèn)等總結(jié)信息,并論證遷移學(xué)習(xí)的適用性。

4.1.2肺結(jié)節(jié)分類算法

    肺結(jié)節(jié)分類算法包括密度分類算法、肺結(jié)節(jié)解剖定位分類。

肺結(jié)節(jié)密度分類算法需明確輸出(密度類別),密度類別制定依據(jù)以及臨床適用性。

肺結(jié)節(jié)密度分類算法需明確算法的輸入,比如算法采用的是2D,2.5D還是3D的圖像作為神經(jīng)網(wǎng)絡(luò)的輸入。若采用2D,需明確肺結(jié)節(jié)選取的圖像層面,如中心層面,最大面積層面;明確算法所采用的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),如Residual Net,Dense-Net;明確算法訓(xùn)練采用的損失函數(shù),如交叉熵,F(xiàn)ocal損失函數(shù);損失函數(shù)等核心組件選擇和設(shè)計(jì)的原則、方法與風(fēng)險(xiǎn)考量,如肺結(jié)節(jié)大小尺度的差異,不同類別肺結(jié)節(jié)樣本的不均衡性、過擬合等;若肺結(jié)節(jié)分類采用多個(gè)模型融合,需明確不同模型訓(xùn)練與推理的方式,以及模型融合的策略,如多數(shù)投票;最后,明確算法的流程圖,訓(xùn)練與部署所采用的框架(如Tensorflow, Pytorch)、算法運(yùn)行環(huán)境(如內(nèi)存、顯存的需求)。

肺結(jié)節(jié)解剖定位分類中,明確肺結(jié)節(jié)定位的類別,如左/右肺定位、肺葉定位、肺段定位。明確算法輸入的類型,如肺結(jié)節(jié)二維切片,肺結(jié)節(jié)三維圖像塊,若輸入類型為二維切片,明確二維切片選取標(biāo)準(zhǔn)(肺結(jié)節(jié)長短徑交點(diǎn)所在切片、肺結(jié)節(jié)最大面積切片)。肺結(jié)節(jié)解剖定位分類算法需明確實(shí)現(xiàn)的機(jī)理,如圖像分割算法,圖像分類算法。

4.1.3肺結(jié)節(jié)測量算法

針對肺結(jié)節(jié)測量算法,明確測量實(shí)現(xiàn)的方式。肺結(jié)節(jié)體積測量算法、密度值測量算法與長短徑測量算法可以通過肺結(jié)節(jié)分割技術(shù)來實(shí)現(xiàn),也可以通過機(jī)器學(xué)習(xí)中的回歸方法來進(jìn)行預(yù)測。其中密度值測量算法需明確測量的類型,如平均值,標(biāo)準(zhǔn)差,最大值,最小值,中位數(shù)。

若申報(bào)產(chǎn)品涉及上述多個(gè)算法,需提供算法整體流程圖,明確各個(gè)算法調(diào)用先后關(guān)系,以及輸入輸出依賴關(guān)系。

若使用遷移學(xué)習(xí)技術(shù),除上述內(nèi)容外還需補(bǔ)充預(yù)訓(xùn)練模型的數(shù)據(jù)集構(gòu)建、驗(yàn)證與確認(rèn)等總結(jié)信息,并論證遷移學(xué)習(xí)的適用性。

4.2算法需求規(guī)范

算法功能需求建議關(guān)注數(shù)據(jù)庫需求、算法性能評價(jià)指標(biāo)及制定依據(jù)。

4.2.1數(shù)據(jù)庫需求

算法性能評價(jià)需要基于訓(xùn)練和測試數(shù)據(jù)庫,數(shù)據(jù)庫具體要求詳見附錄2。

4.2.2算法性能評價(jià)指標(biāo)

在指定肺結(jié)節(jié)檢出算法評估指標(biāo)之前,需明確標(biāo)記匹配的方式,即算法標(biāo)記目標(biāo)與參考標(biāo)準(zhǔn)目標(biāo)的匹配方式,常見的標(biāo)記匹配方式有按照區(qū)域重疊的比例、中心點(diǎn)的距離、中心是否落入來判斷標(biāo)記是否匹配;明確算法任務(wù),明確算法訓(xùn)練和調(diào)優(yōu)過程中不同任務(wù)的的評估指標(biāo)及定義。有關(guān)標(biāo)記匹配方式與評估指標(biāo)的定義可以參考“人工智能醫(yī)療器械 肺部影像輔助分析軟件算法性能測試方法”5.1.1.1章節(jié)。

明確不同任務(wù)的算法評價(jià)指標(biāo)的確定依據(jù)、分層影響因素選擇依據(jù),建議參考《人工智能醫(yī)療器械 肺部影像輔助分析軟件 算法性能測試方法》、肺結(jié)節(jié)診療中國專家共識、美國國立綜合癌癥網(wǎng)絡(luò)NCCN指南、Fleishner年學(xué)會指南、中華醫(yī)學(xué)會肺癌臨床診療指南等。

結(jié)節(jié)檢出指標(biāo)包括不限于召回率、精確度、特異度。

結(jié)節(jié)分類指標(biāo)包括不限于靈敏度、特異度、總體的Kappa系數(shù)、準(zhǔn)確率。

結(jié)節(jié)分割指標(biāo)包括不限于體積交并比、Dice系數(shù)、Hausdorff距離。

尺寸測量指標(biāo)包括不限于結(jié)節(jié)體積相對誤差率、肺結(jié)節(jié)平均徑相對誤差率、肺結(jié)節(jié)長徑絕對誤差均值MAE、肺結(jié)節(jié)短徑絕對誤差均值MAE。

提供文獻(xiàn)綜述論證評價(jià)指標(biāo)選擇及分層影響因素選擇的合理性。分層分析的影響因素包括年齡、病變類型、大小、層厚、采集協(xié)議等重要變量。

算法質(zhì)量特性包括泛化能力、魯棒性(面向硬件變化的對抗測試、面向軟件前處理的對抗測試、壓力測試)、重復(fù)性、一致性、效率。

隨訪評估功能包括倍增時(shí)間、數(shù)值參數(shù)的百分比(%)和絕對變化,如結(jié)節(jié)長軸、短軸、平均直徑、最大三維直徑、有效直徑、體積、平均HU。

4.2.3算法性能測試基本要求

4.2.3.1結(jié)節(jié)檢出

軟件檢出肺結(jié)節(jié)的召回率和精確度不低于X%。

召回率和精確度的計(jì)算一般針對全體結(jié)節(jié)進(jìn)行。在設(shè)置篩選條件后,可以使用篩選后的參考標(biāo)準(zhǔn)與篩選后的AI結(jié)果進(jìn)行匹配。如篩選后假陽性結(jié)果難以定義,建議以召回率為主要指標(biāo),常見情形為:

-對具體某一種結(jié)節(jié)類型,計(jì)算結(jié)節(jié)的召回率。結(jié)節(jié)類型包括實(shí)性結(jié)節(jié)、純磨玻璃結(jié)節(jié)、部分實(shí)性結(jié)節(jié)、鈣化結(jié)節(jié)等。

-對平均直徑、長徑處于某一區(qū)間的結(jié)節(jié),計(jì)算召回率

-·對類型、尺寸范圍組合的結(jié)節(jié),計(jì)算召回率。

4.2.3.2結(jié)節(jié)分類準(zhǔn)確度

明確分類場景,如二分類場景、多分類場景。對于二分類場景下的指標(biāo),如軟件能夠?qū)類型的肺結(jié)節(jié)進(jìn)行分類,準(zhǔn)確率不低于X%,靈敏度不低于Y%,特異性不低于Z%??傮w的Kappa系數(shù)不低于N%;多分類問題可以轉(zhuǎn)化為二分類問題,按每一類進(jìn)行描述。

4.2.3.3結(jié)節(jié)分割

體積交并比不小于XX;如果產(chǎn)品只輸出最大層面則計(jì)算最大層面交并比,或DICE系數(shù)不小于XX

4.2.3.4尺寸測量

體積測量偏差±XX%;長徑測量偏差±XX%。長徑小于等于10mm則增加平均直徑允差,大于10mm則增加短徑允差。

4.2.4樣本量

明確樣本量估計(jì)的公式、參數(shù)及制定依據(jù)。

4.3數(shù)據(jù)質(zhì)控

建議參考“人工智能醫(yī)療器械注冊審查指導(dǎo)原則”及“人工智能醫(yī)療器械質(zhì)量要求和評價(jià) 第2部分:數(shù)據(jù)集通用要求”。

4.3.1明確數(shù)據(jù)庫信息(詳見附錄2)

4.3.2數(shù)據(jù)預(yù)處理

數(shù)據(jù)預(yù)處理需明確數(shù)據(jù)轉(zhuǎn)移保存的方法。

數(shù)據(jù)入庫前完成清洗,主要是讀取Patient數(shù)據(jù)確定數(shù)據(jù)是否完成脫敏,是否合規(guī);讀取Study和Series的識別碼確定圖像的唯一性,通過Image的標(biāo)識碼判定圖像是否連續(xù)完整。此外,通過讀取層厚、層間距等信息確定圖像的質(zhì)量并加以篩選。流程圖示例如圖1所示:

肺結(jié)節(jié)CT影像輔助檢測軟件注冊.jpg

4.3.3數(shù)據(jù)標(biāo)注

數(shù)據(jù)標(biāo)注建議參考“人工智能醫(yī)療器械質(zhì)量要求和評價(jià) 第3部分:數(shù)據(jù)標(biāo)注通用要求”。

需明確標(biāo)注任務(wù)分類(包括數(shù)據(jù)模態(tài)、執(zhí)行主體、標(biāo)注結(jié)果格式、標(biāo)注結(jié)果性質(zhì)、標(biāo)注結(jié)果形式等維度),提供標(biāo)注任務(wù)描述文檔(標(biāo)準(zhǔn)規(guī)則、標(biāo)注人員、標(biāo)注工具、標(biāo)注環(huán)境、數(shù)據(jù))。其中標(biāo)注規(guī)則需明確制定依據(jù)并提供參考文獻(xiàn)。標(biāo)注人員建議列表給出標(biāo)注、審核、仲裁人員的基本信息,如數(shù)量、醫(yī)療機(jī)構(gòu)、科室、工作年限、職稱、培訓(xùn)、培訓(xùn)考核情況、工作量、標(biāo)注任務(wù)、參考的所有受檢者臨床信息(如病理檢測結(jié)果)。

標(biāo)注與質(zhì)控流程建議提供業(yè)務(wù)架構(gòu)、過程組織(任務(wù)生成、任務(wù)分配、任務(wù)實(shí)施、質(zhì)量控制、驗(yàn)收準(zhǔn)則及驗(yàn)收報(bào)告。其中業(yè)務(wù)架構(gòu)宜采用流程圖介紹單張圖片的標(biāo)注、審核、仲裁過程。

如標(biāo)注工具、標(biāo)注平臺使用人工智能算法進(jìn)行輔助標(biāo)注,需提交標(biāo)注工具、標(biāo)注平臺算法性能研究資料。

4.3.4數(shù)據(jù)集構(gòu)建

依據(jù)《人工智能醫(yī)療器械注冊審查指導(dǎo)原則》指南明確訓(xùn)練集、調(diào)優(yōu)集、測試集的劃分方法、劃分依據(jù)、數(shù)據(jù)分配比例。

提供查重驗(yàn)證結(jié)果,以證實(shí)訓(xùn)練集、調(diào)優(yōu)集、測試集的樣本兩兩無交集。

明確數(shù)據(jù)擴(kuò)增需明確擴(kuò)增的對象、范圍、方式(離線、在線)、方法(如翻轉(zhuǎn)、旋轉(zhuǎn)、鏡像、平移、縮放、濾波、生成對抗網(wǎng)絡(luò)等)、倍數(shù)、在線數(shù)據(jù)擴(kuò)增記錄。

提供擴(kuò)增數(shù)據(jù)庫與標(biāo)注數(shù)據(jù)庫樣本量、樣本分布(注明擴(kuò)增倍數(shù))對比表,以證實(shí)擴(kuò)增數(shù)據(jù)庫樣本量的充分性以及樣本分布的合理性。

提供采用生成對抗網(wǎng)絡(luò)數(shù)據(jù)擴(kuò)增的算法基本信息以及算法選用依據(jù)資料。

4.4算法訓(xùn)練

   算法訓(xùn)練需明確訓(xùn)練過程所采用的優(yōu)化器及其相關(guān)參數(shù),如Adam,SGD;在算法訓(xùn)練階段,需明確驗(yàn)證集的劃分方式,如留出法,交叉驗(yàn)證法; 需明確訓(xùn)練目標(biāo),即判斷何時(shí)停止訓(xùn)練,如設(shè)定最大的訓(xùn)練epoch數(shù)目,依據(jù)損失函數(shù)判斷損失穩(wěn)定且不繼續(xù)下降,根據(jù)訓(xùn)練epoch數(shù)量-評估指標(biāo)曲線判斷評估指標(biāo)不繼續(xù)提升等。當(dāng)訓(xùn)練停止后,明確訓(xùn)練模型最佳epoch的選擇方法,如在留出法中,根據(jù)留出部分的驗(yàn)證集選取評價(jià)指標(biāo)最優(yōu)的epoch;在交叉驗(yàn)證法中,計(jì)算多次隨機(jī)劃分驗(yàn)證集的評價(jià)指標(biāo)平均值,選擇最優(yōu)的epoch。同時(shí),結(jié)合臨床需求(如靈敏度、精準(zhǔn)度),明確算法出廠閾值的選擇與方法,并論證訓(xùn)練所得模型是否滿足產(chǎn)品既定目標(biāo)。算法出廠閾值的選擇需提供制定依據(jù)。

算法訓(xùn)練階段需結(jié)合訓(xùn)練數(shù)據(jù)量-評估指標(biāo)曲線驗(yàn)證算法訓(xùn)練數(shù)據(jù)量的充分性,常用的方式有以最小訓(xùn)練數(shù)據(jù)量為基礎(chǔ),逐步增加數(shù)據(jù)量。對于不同的訓(xùn)練數(shù)據(jù)量,計(jì)算對應(yīng)的評價(jià)指標(biāo)。當(dāng)評價(jià)指標(biāo)為單一標(biāo)量時(shí)(如靈敏度),訓(xùn)練數(shù)據(jù)量-評估指標(biāo)曲線的x軸為訓(xùn)練數(shù)據(jù)的樣本量(如CT序列個(gè)數(shù)),y軸為在使用特定訓(xùn)練量時(shí),算法在測試集的評價(jià)指標(biāo)。結(jié)合訓(xùn)練數(shù)據(jù)量-評估指標(biāo)曲線,判斷當(dāng)訓(xùn)練數(shù)據(jù)量有限時(shí),評價(jià)指標(biāo)是否隨數(shù)據(jù)量的增加而增加,并在數(shù)據(jù)量達(dá)到一定程度后,評價(jià)指標(biāo)趨于平穩(wěn)。當(dāng)評價(jià)指標(biāo)為曲線時(shí),可考慮根據(jù)不同訓(xùn)練數(shù)據(jù)量,繪制對應(yīng)的評價(jià)指標(biāo)曲線,判斷曲線下面積(AUC)是否先隨數(shù)據(jù)量的增加而增加,最后當(dāng)數(shù)據(jù)量達(dá)到一定程度后趨于平穩(wěn)。以fROC曲線為例,在評估訓(xùn)練數(shù)據(jù)量的充分性時(shí),當(dāng)訓(xùn)練數(shù)據(jù)量有限時(shí),fROC曲線下面積需隨數(shù)據(jù)量增加而增加,fROC曲線逐步逼近坐標(biāo)左上角;當(dāng)訓(xùn)練數(shù)據(jù)量達(dá)到一定程度后,fROC曲線下面積慢慢趨于穩(wěn)定。

若訓(xùn)練過程中采用了數(shù)據(jù)擴(kuò)增的方式,需明確擴(kuò)增方式,如離線數(shù)據(jù)擴(kuò)增,在線數(shù)據(jù)擴(kuò)增。同時(shí),需明確數(shù)據(jù)擴(kuò)增的方法以及相應(yīng)的參數(shù)設(shè)置,如圖像平移,旋轉(zhuǎn),縮放,彈性形變等。若訓(xùn)練過程未采用數(shù)據(jù)擴(kuò)增,需論證未進(jìn)行數(shù)據(jù)擴(kuò)增的理由,或者通過對比試驗(yàn)(數(shù)據(jù)擴(kuò)增 vs 未數(shù)據(jù)擴(kuò)增)來論證合理性。

4.5算法驗(yàn)證與確認(rèn)

明確算法任務(wù),明確不同任務(wù)的算法評價(jià)指標(biāo)的閾值及確定依據(jù)。明確算法標(biāo)記目標(biāo)與參考標(biāo)準(zhǔn)的匹配方式和匹配閾值。明確病例水平和結(jié)節(jié)水平計(jì)算方法及定義一個(gè)結(jié)節(jié)的處理方法及病例陽性的方法。區(qū)分算法任務(wù)制定具體測試方法和結(jié)果計(jì)算方法。建議參考《人工智能醫(yī)療器械 肺部影像輔助分析軟件 算法性能測試方法》。

4.5.1檢出算法性能評估

基于算法的出廠閾值,明確算法在訓(xùn)練集,調(diào)優(yōu)集和測試集的假陰性(召回率)與假陽性(精確度),通過比較三個(gè)數(shù)據(jù)集的性能來評估算法的泛化性。

若在訓(xùn)練過程中使用數(shù)據(jù)擴(kuò)增,需在調(diào)優(yōu)集上比較使用與不使用數(shù)據(jù)擴(kuò)增對肺結(jié)節(jié)檢出性能的影響。

對于肺結(jié)節(jié)檢出算法,需分層統(tǒng)計(jì)算法對于不同大小和不同密度的肺結(jié)節(jié)的檢出效能,可以通過fROC曲線,召回率以及精確度等指標(biāo)來評價(jià),同時(shí)結(jié)合臨床需求論述結(jié)果的合理性。在肺結(jié)節(jié)大小的維度,可將肺結(jié)節(jié)分為4-5mm,5-8mm以及8-10mm來進(jìn)行分層統(tǒng)計(jì),一般而言,肺結(jié)節(jié)尺寸越大,檢出的難度越低。在肺結(jié)節(jié)密度維度,需明確是二分類還是多分類,需明確密度類型及制定依據(jù),進(jìn)行密度類型的分層統(tǒng)計(jì)。

除此之外,還需考慮性別、年齡、設(shè)備廠家、重建方式、層厚/層間距、管電流、管電壓等參數(shù)對肺結(jié)節(jié)檢出算法效能的影響。需明確設(shè)備廠家,且必須符合DICOM 3.0協(xié)議標(biāo)準(zhǔn)數(shù)據(jù);管電壓考慮70-140 kV,管電流考慮10-400 mA;層厚與層間距需不超過5mm,在分層統(tǒng)計(jì)中可以考慮將層厚與層間距歸為兩大類0.625-1.250mm和1.25-5mm,前者為“胸部CT肺結(jié)節(jié)數(shù)據(jù)集構(gòu)建及質(zhì)量控制專家共識”推薦的肺結(jié)節(jié)診斷層厚的范圍;重建方式需考慮常見的肺算法與標(biāo)準(zhǔn)算法(軟組織算法)。

在亞組的分層統(tǒng)計(jì)中,肺結(jié)節(jié)檢出效能需在不同因素下均能取得較好性能。若在某些影響因素下,肺結(jié)節(jié)檢出效能存在差異,需進(jìn)行合理地論證,并在說明書給出使用限制。

需提供算法性能測試報(bào)告,至少包括軟件環(huán)境、硬件環(huán)境、測試平臺描述(如適用)、測試集描述、算法性能指標(biāo)的符合性分析(性能指標(biāo)的定義、測試通過準(zhǔn)則、統(tǒng)計(jì)分析)、算法錯(cuò)誤統(tǒng)計(jì)。需包括算法性能及算法質(zhì)量特性、隨訪功能測試結(jié)果。

4.6 算法性能綜合分析

結(jié)合算法訓(xùn)練、算法性能評估、臨床評價(jià)等結(jié)果開展算法性能綜合評價(jià),針對訓(xùn)練樣本量和測試樣本量過少、測試結(jié)果明顯低于算法設(shè)計(jì)目標(biāo)、算法性能變異度過大等情況,對產(chǎn)品的適用范圍、使用場景、核心功能進(jìn)行必要限制。

5.用戶培訓(xùn)方案

對于軟件安全性級別為嚴(yán)重級別的產(chǎn)品,原則上需單獨(dú)提供一份用戶培訓(xùn)方案,包括用戶培訓(xùn)的計(jì)劃、材料、方式、師資等。

用戶培訓(xùn)需關(guān)注以下內(nèi)容:預(yù)期用戶要求,如工作年限或執(zhí)業(yè)資格;醫(yī)生必須對軟件結(jié)果進(jìn)行確認(rèn),軟件只用于輔助檢測,不能替代醫(yī)生。CT圖像要求,如嚴(yán)重呼吸、金屬偽影或有掃描質(zhì)量問題的CT影像慎用;基于臨床試驗(yàn)驗(yàn)證,不宜使用該軟件的疾?。?/p>

(四)產(chǎn)品說明書和標(biāo)簽樣稿

說明書、標(biāo)簽和包裝標(biāo)識需符合《醫(yī)療器械說明書和標(biāo)簽管理規(guī)定》(國家食品藥品監(jiān)督管理總局令第6號)和《醫(yī)療器械軟件技術(shù)審查指導(dǎo)原則》、《醫(yī)療器械網(wǎng)絡(luò)安全技術(shù)審查指導(dǎo)原則》、《人工智能醫(yī)療器械注冊審查指導(dǎo)原則》和相關(guān)標(biāo)準(zhǔn)的規(guī)定。

說明書內(nèi)容需重點(diǎn)關(guān)注:

1.用戶說明

對預(yù)期用戶和推薦用戶培訓(xùn)的詳細(xì)說明。如,預(yù)期用戶工作年限或執(zhí)業(yè)資格要求,且需經(jīng)培訓(xùn)合格。

2.使用限制

若產(chǎn)品采用人工智能黑盒算法,需根據(jù)算法影響因素分析報(bào)告,在說明書中明確產(chǎn)品使用限制和必要警示提示信息。

示例:不應(yīng)僅僅依靠本器械所標(biāo)識的輸出,應(yīng)由專業(yè)醫(yī)師對結(jié)果進(jìn)行解釋。

已發(fā)現(xiàn)該器械對于XX的受檢者無效。具有這種疾病/病癥/異常的受檢者不應(yīng)使用該器械。

對訓(xùn)練數(shù)據(jù)、測試數(shù)據(jù)與臨床試驗(yàn)的算法性能評估結(jié)果不佳,數(shù)據(jù)量偏少的,此類受檢者使用該器械,應(yīng)由專業(yè)醫(yī)師結(jié)合受檢者的病史、癥狀、體征、其他檢查結(jié)果情況綜合給出最終的肺結(jié)節(jié)檢出結(jié)論,核實(shí)是否需要進(jìn)行一步診療的決策,并對臨床診斷結(jié)果負(fù)責(zé)。

3.注意事項(xiàng)

測量準(zhǔn)確性(如圖像長度、CT值平均值、最大值、最小值、面積值、體積、密度、位置坐標(biāo))、測量功能警示信息,如體積測量是基于體素個(gè)數(shù)的圖形學(xué)測量,并不能完全反映人體真實(shí)的體積,測量體積僅供醫(yī)生參考。

CT影像質(zhì)量要求,如嚴(yán)重呼吸、金屬偽影或有掃描質(zhì)量問題的CT影像慎用;圖像序列未完整包含肺臟全部組織的圖像數(shù)據(jù)禁用。

醫(yī)生必須對軟件結(jié)果進(jìn)行確認(rèn),軟件只用于輔助檢測,不能替代醫(yī)生。原始的AI結(jié)果應(yīng)保留,確保軟件結(jié)果的可追溯性與可責(zé)性。

4.預(yù)防措施

需明確與器械使用相關(guān)的不良事件,并提供緩解措施建議。不良事件討論需至少包括對假陽性事件和假陰性事件的不良事件的討論。

5.器械描述

需提供以下內(nèi)容:

-算法設(shè)計(jì)和功能的概述,如有特殊聲明,如用于繼發(fā)性結(jié)節(jié)或更小結(jié)節(jié)檢測,可以特別說明。

-培訓(xùn)范例和培訓(xùn)或開發(fā)數(shù)據(jù)庫的概述

-研發(fā)和調(diào)整算法中所用的受檢者數(shù)據(jù)的參考標(biāo)準(zhǔn)的描述

-與本器械兼容的采集技術(shù)

-適當(dāng)顯示器械標(biāo)記的要求

6.軟件

需明確軟件發(fā)布版本、提供網(wǎng)絡(luò)安全說明和使用指導(dǎo),明確用戶訪問控制機(jī)制、電子接口(含網(wǎng)絡(luò)接口、電子數(shù)據(jù)交換接口)及其數(shù)據(jù)類型和技術(shù)特征、網(wǎng)絡(luò)安全特征配置、數(shù)據(jù)備份與災(zāi)難恢復(fù)、運(yùn)行環(huán)境(含硬件配置、外部軟件環(huán)境、網(wǎng)絡(luò)環(huán)境,若適用)、安全軟件兼容性列表(若適用)、外部軟件環(huán)境與安全軟件更新(若適用)、現(xiàn)成軟件清單(SBOM,若適用)等要求。

7.產(chǎn)品接口和聯(lián)合使用設(shè)備

需明確對配合使用的圖像工作站和PACS適當(dāng)顯示器械標(biāo)記的要求。

需明確CT設(shè)備兼容性與掃描參數(shù)要求(如層厚、排數(shù))、

8.算法訓(xùn)練總結(jié)

訓(xùn)練集基本信息、訓(xùn)練指標(biāo)與結(jié)果

9.算法性能評估總結(jié)

-算法輸入與輸出

-測試集基本信息

-用于確定器械標(biāo)記的每個(gè)區(qū)域的性質(zhì)的評分標(biāo)準(zhǔn)

-每個(gè)可用器械操作點(diǎn)的總體敏感度和假陽性率指標(biāo)

-分層分析(如,根據(jù)病變大小、病變類型、采集參數(shù)、成像或數(shù)據(jù)特征)

-獨(dú)立FROC性能(如適用),需和操作特性曲線一起說明。

-測試結(jié)果

10.臨床試驗(yàn)總結(jié)

需包括臨床試驗(yàn)設(shè)計(jì)基本類型、研究對象(受試者及閱片者情況)、評價(jià)指標(biāo),金標(biāo)準(zhǔn)、對收集臨床信息方法的描述、統(tǒng)計(jì)方法描述、樣本量,臨床試驗(yàn)結(jié)果(含各結(jié)節(jié)尺寸、密度影、閱片者亞組情況)。

11.公開數(shù)據(jù)庫及測試結(jié)果(如有)

12.第三方測評數(shù)據(jù)庫及測試結(jié)果(如有)

13.決策指標(biāo)定義(或提供決策指標(biāo)定義所依據(jù)的臨床指南、專家共識等參考文獻(xiàn))等信息。

三、參考文獻(xiàn)

[1]國家市場監(jiān)督管理總局. 醫(yī)療器械注冊與備案管理辦法(市場監(jiān)管總局令第47號),2021.8

[2]原國家食品藥品監(jiān)督管理總局. 醫(yī)療器械說明書和標(biāo)簽管理規(guī)定(總局令第6號),2014.7

[3]國家藥品監(jiān)督管理局. 醫(yī)療器械注冊申報(bào)資料要求和批準(zhǔn)證明文件格式(2021年第121號),2021.9

[4]國家藥品監(jiān)督管理局. 醫(yī)療器械通用名稱命名指導(dǎo)原則(2019年第99號通告),2019.12

[5]國家藥品監(jiān)督管理局. 醫(yī)療器械安全和性能基本原則(2020年第18號通告),2020.3

[6]原國家食品藥品監(jiān)督管理總局.醫(yī)療器械產(chǎn)品技術(shù)要求編寫指導(dǎo)原則(2014年第9號通告),2014.5

[7]國家藥品監(jiān)督管理局醫(yī)療器械技術(shù)審評中心. 醫(yī)療器械軟件技術(shù)審查指導(dǎo)原則(第二版)(征求意見稿),2020.6

[8] 國家藥品監(jiān)督管理局醫(yī)療器械技術(shù)審評中心. 醫(yī)療器械網(wǎng)絡(luò)安全技術(shù)審查指導(dǎo)原則(第二版)(征求意見稿),2020.9

[9]原國家食品藥品監(jiān)督管理總局. 移動醫(yī)療器械注冊技術(shù)審查指導(dǎo)原則(2017年第222號通告),2017.12

[10]國家藥品監(jiān)督管理局醫(yī)療器械技術(shù)審評中心. 深度學(xué)習(xí)輔助決策醫(yī)療器械軟件審評要點(diǎn)(2019年第7號通告),2019.7

[11] 國家藥品監(jiān)督管理局醫(yī)療器械技術(shù)審評中心. 肺炎CT影像輔助分診與評估軟件審評要點(diǎn)(試行)(2020年第8號通告),2020.3

[12]國家藥品監(jiān)督管理局醫(yī)療器械技術(shù)審評中心. 人工智能醫(yī)療器械審查指導(dǎo)原則(征求意見稿),2021.6

[13]國家藥品監(jiān)督管理局. 醫(yī)療器械生產(chǎn)質(zhì)量管理規(guī)范附錄獨(dú)立軟件(2019年第43號通告),2019.7

[14] 國家藥品監(jiān)督管理局. 醫(yī)療器械生產(chǎn)質(zhì)量管理規(guī)范獨(dú)立軟件現(xiàn)場檢查指導(dǎo)原則(藥監(jiān)綜械管〔2020〕57號),2020.5

[15] 國家藥品監(jiān)督管理局. 人工智能類醫(yī)用軟件產(chǎn)品分類界定指導(dǎo)原則(2021年第47號)),2021.7

[16] 國家藥品監(jiān)督管理局標(biāo)準(zhǔn)管理中心. 輔助決策類醫(yī)用軟件產(chǎn)品分類界定指導(dǎo)原則(征求意見稿),2021.6

    [17] 國家衛(wèi)生健康委員會. 人工智能輔助診斷技術(shù)管理規(guī)范(國衛(wèi)辦醫(yī)發(fā)〔2017〕7號),2017.2

    [18]國家衛(wèi)生健康委員會. 人工智能輔助治療技術(shù)管理規(guī)范(國衛(wèi)辦醫(yī)發(fā)〔2017〕7號),2017.2

[19]YY/T 0287-2017 醫(yī)療器械 質(zhì)量管理體系 用于法規(guī)的要求[S]

[20] YY/T 0316-2016 醫(yī)療器械 風(fēng)險(xiǎn)管理對醫(yī)療器械的應(yīng)用[S]

[21] YY/T 0664-2020 醫(yī)療器械軟件 軟件生存周期過程[S]

[22] YY/T 1406.1-2016 醫(yī)療器械軟件 第1部分:YY/T 0316應(yīng)用于醫(yī)療器械軟件的指南[S]

[23]GB/T 25000.10-2016 系統(tǒng)與軟件工程 系統(tǒng)與軟件質(zhì)量要求與評價(jià)(SQuaRE)系統(tǒng)與軟件質(zhì)量模型[S]

[24]GB/T 39725-2020 信息安全技術(shù)  健康醫(yī)療數(shù)據(jù)安全指南 [S]

[25]YY/T 1833.1人工智能醫(yī)療器械 質(zhì)量要求和評價(jià) 第1部分:術(shù)語(報(bào)批稿) [S]

[26] YY/T 1833.2人工智能醫(yī)療器械 質(zhì)量要求和評價(jià) 第2部分:數(shù)據(jù)集通用要求(報(bào)批稿) [S]

    [27]YY/T 1833.3人工智能醫(yī)療器械 質(zhì)量要求和評價(jià) 第3部分:數(shù)據(jù)標(biāo)注通用要求(報(bào)批稿) [S]

[28] YY/T 人工智能醫(yī)療器械 肺部影像輔助分析軟件 算法性能測試方法(報(bào)批稿) [S]

[29 ]AIMDICP-WG6-2020-002 基于胸部CT的肺結(jié)節(jié)影像輔助決策產(chǎn)品性能指標(biāo)和測試方法 [S]

[30] AIMDICP-WG12-2021-001 醫(yī)學(xué)人工智能技術(shù)學(xué)名詞(草稿) [S]

[31] FDA. Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data, 2012.7

[32] FDA. Considerations for Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data, 2012.7

[33] FDA. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML) - Based Software as a Medical Device (SaMD) Draft, 2019.5

[34] FDA. Artificial Intelligence and Machine Learning(AI/ ML) Software as a Medical Device(SaMD) Action Plan, 2021.1

[38] 胸部CT肺結(jié)節(jié)數(shù)據(jù)集構(gòu)建及質(zhì)量控制專家共識[J].中華放射學(xué)雜志,2021,55(02):104-110.



Copyright © 2018 醫(yī)療器械注冊技術(shù)咨詢 浙ICP備18025678號 技術(shù)支持:熙和網(wǎng)絡(luò)